Given a binary search tree (BST), find the lowest common ancestor (LCA) of two given nodes in the BST.
According to the definition of LCA on Wikipedia: “The lowest common ancestor is defined between two nodes v and w as the lowest node in T that has both v and w as descendants (where we allow a node to be a descendant of itself).”
1 2 3 4 5 6 7 8
_______6______ / \ ___2__ ___8__ / \ / \ 0 _4 79 / \ 35 For example, the lowest common ancestor (LCA) of nodes 2and8is6. Another example is LCA of nodes 2and4is2, since a node can be a descendant of itself according to the LCA definition.
Iterative solution
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
/** * Definition for a binary tree node. * public class TreeNode { * int val; * TreeNode left; * TreeNode right; * TreeNode(int x) { val = x; } * } */ publicclassSolution{ public TreeNode lowestCommonAncestor(TreeNode root, TreeNode p, TreeNode q){ if (root == null || p == null || q == null){returnnull;} while ((root.val - p.val) * (root.val - q.val) > 0){ root = p.val < root.val ? root.left : root.right; } return root; } }
Recursive solution
1 2 3 4 5 6 7 8 9 10 11 12 13 14
publicclassSolution{ public TreeNode lowestCommonAncestor(TreeNode root, TreeNode p, TreeNode q){ if (root == null || p == null || q == null){returnnull;} if ((root.val - p.val) * (root.val - q.val) <= 0){ return root; }else{ if (p.val < root.val){ return lowestCommonAncestor(root.left, p,q); }else{ return lowestCommonAncestor(root.right, p,q); } } } }