Given a binary search tree (BST), find the lowest common ancestor (LCA) of two given nodes in the BST.

According to the definition of LCA on Wikipedia: “The lowest common ancestor is defined between two nodes v and w as the lowest node in T that has both v and w as descendants (where we allow a node to be a descendant of itself).”

1
2
3
4
5
6
7
8
        _______6______
/ \
___2__ ___8__
/ \ / \
0 _4 7 9
/ \
3 5
For example, the lowest common ancestor (LCA) of nodes 2 and 8 is 6. Another example is LCA of nodes 2 and 4 is 2, since a node can be a descendant of itself according to the LCA definition.

Iterative solution

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
/**
* Definition for a binary tree node.
* public class TreeNode {
* int val;
* TreeNode left;
* TreeNode right;
* TreeNode(int x) { val = x; }
* }
*/

public class Solution {
public TreeNode lowestCommonAncestor(TreeNode root, TreeNode p, TreeNode q) {
if (root == null || p == null || q == null){return null;}
while ((root.val - p.val) * (root.val - q.val) > 0){
root = p.val < root.val ? root.left : root.right;
}
return root;
}
}

Recursive solution

1
2
3
4
5
6
7
8
9
10
11
12
13
14
public class Solution {
public TreeNode lowestCommonAncestor(TreeNode root, TreeNode p, TreeNode q) {
if (root == null || p == null || q == null){return null;}
if ((root.val - p.val) * (root.val - q.val) <= 0){
return root;
}else{
if (p.val < root.val){
return lowestCommonAncestor(root.left, p,q);
}else{
return lowestCommonAncestor(root.right, p,q);
}
}
}
}

Same one line solution

1
2
3
4
5
6
7
public class Solution {
public TreeNode lowestCommonAncestor(TreeNode root, TreeNode p, TreeNode q) {
if (root == null || p == null || q == null){return null;}
return ((root.val - p.val) * (root.val - q.val) <= 0) ? root :
lowestCommonAncestor(p.val < root.val ? root.left : root.right, p, q);
}
}