Given a string s, partition s such that every substring of the partition is a palindrome.
Return the minimum cuts needed for a palindrome partitioning of s.
For example, given s = “aab”,
Return 1 since the palindrome partitioning [“aa”,”b”] could be produced using 1 cut.
O(n^2 ) time O(n^2 ) space DP solution
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21
| public class Solution { public int minCut(String s) { if (s == null || s.length() == 0) return 0; int n = s.length(); int[] cuts = new int[n]; boolean[][] isPalindrome = new boolean[n][n]; char[] chars = s.toCharArray(); for (int i = 0; i < n; i++) { int min = i; for (int j = 0; j <= i; j++) { if (chars[i] == chars[j] && (j + 1 > i - 1 || isPalindrome[j + 1][i - 1])) { isPalindrome[j][i] = true; min = j == 0 ? 0 : Math.min(min, cuts[j - 1] + 1); } } cuts[i] = min; } return cuts[n - 1]; } }
|
O(n^2 ) time O(n) space DP solution
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33
| public class Solution { public int minCut(String s) { if (s == null || s.length() == 0) return 0; int n = s.length(); char[] chars = s.toCharArray(); int[] cuts = new int[n + 1]; for (int i = 0; i <= n; i++) { cuts[i] = i - 1; } for (int i = 0; i < n; i++) { for (int j = 0; i - j >= 0 && i + j < n; j++) { if (chars[i - j] == chars[i + j ]) { cuts[i + j + 1] = Math.min(cuts[i + j + 1], cuts[i - j] + 1); } else { break; } } for (int j = 1; i - j + 1 >= 0 && i + j < n; j++) { if (chars[i - j + 1] == chars[i + j]) { cuts[i + j + 1] = Math.min(cuts[i + j + 1], 1 + cuts[i - j + 1]); } else { break; } } } return cuts[n]; } }
|