Given a binary tree and a sum, determine if the tree has a root-to-leaf path such that adding up all the values along the path equals the given sum.

For example:
Given the below binary tree and sum = 22,

1
2
3
4
5
6
7
      5
/ \
4 8
/ / \
11 13 4
/ \ \
7 2 1

return true, as there exist a root-to-leaf path 5->4->11->2 which sum is 22.

Recursive O(n) time solution

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
/**
* Definition for a binary tree node.
* public class TreeNode {
* int val;
* TreeNode left;
* TreeNode right;
* TreeNode(int x) { val = x; }
* }
*/

public class Solution {
public boolean hasPathSum(TreeNode root, int sum) {
if (root == null) return false;
if (root.left == null && root.right == null)
return root.val == sum;
return hasPathSum(root.left, sum - root.val) || hasPathSum(root.right, sum - root.val);
}
}

Iterative O(n) time O(n) space solution

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
/**
* Definition for a binary tree node.
* public class TreeNode {
* int val;
* TreeNode left;
* TreeNode right;
* TreeNode(int x) { val = x; }
* }
*/

public class Solution {
public boolean hasPathSum(TreeNode root, int sum) {
if (root == null) return false;
Stack<TreeNode> stack = new Stack<>();
TreeNode prev = null, cur = root;
int sumTree = 0;
while (cur != null || !stack.isEmpty()){
while (cur != null) {
stack.push(cur);
sumTree += cur.val;
cur = cur.left;
}
cur = stack.peek();
if (cur.left == null && cur.right == null && sumTree == sum) {
return true;
}
if (cur.right != null && prev != cur.right) {
cur = cur.right;
} else {
prev = cur;
stack.pop();
sumTree -= cur.val;
cur = null;
}
}
return false;
}
}