Given a binary tree and a sum, determine if the tree has a root-to-leaf path such that adding up all the values along the path equals the given sum.
For example:
Given the below binary tree and sum = 22,
1 2 3 4 5 6 7
| 5 / \ 4 8 / / \ 11 13 4 / \ \ 7 2 1
|
return true, as there exist a root-to-leaf path 5->4->11->2 which sum is 22.
Recursive O(n) time solution
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17
| * Definition for a binary tree node. * public class TreeNode { * int val; * TreeNode left; * TreeNode right; * TreeNode(int x) { val = x; } * } */ public class Solution { public boolean hasPathSum(TreeNode root, int sum) { if (root == null) return false; if (root.left == null && root.right == null) return root.val == sum; return hasPathSum(root.left, sum - root.val) || hasPathSum(root.right, sum - root.val); } }
|
Iterative O(n) time O(n) space solution
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37
| * Definition for a binary tree node. * public class TreeNode { * int val; * TreeNode left; * TreeNode right; * TreeNode(int x) { val = x; } * } */ public class Solution { public boolean hasPathSum(TreeNode root, int sum) { if (root == null) return false; Stack<TreeNode> stack = new Stack<>(); TreeNode prev = null, cur = root; int sumTree = 0; while (cur != null || !stack.isEmpty()){ while (cur != null) { stack.push(cur); sumTree += cur.val; cur = cur.left; } cur = stack.peek(); if (cur.left == null && cur.right == null && sumTree == sum) { return true; } if (cur.right != null && prev != cur.right) { cur = cur.right; } else { prev = cur; stack.pop(); sumTree -= cur.val; cur = null; } } return false; } }
|