Given a binary tree, determine if it is a valid binary search tree (BST).

Assume a BST is defined as follows:

  • The left subtree of a node contains only nodes with keys less than the node’s key.
  • The right subtree of a node contains only nodes with keys greater than the node’s key.
  • Both the left and right subtrees must also be binary search trees.

Example 1:

1
2
3
4
    2
/ \
1 3
Binary tree [2,1,3], return true.

Example 2:

1
2
3
4
    1
/ \
2 3
Binary tree [1,2,3], return false.

O(n) time O(1) space recursive solution

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
/**
* Definition for a binary tree node.
* public class TreeNode {
* int val;
* TreeNode left;
* TreeNode right;
* TreeNode(int x) { val = x; }
* }
*/

public class Solution {
public boolean isValidBST(TreeNode root) {
return isValid(root, null, null);
}

private boolean isValid(TreeNode root, Integer lower, Integer upper) {
if (root != null) {
return (lower == null || root.val > lower) && (upper == null || root.val < upper) && isValid(root.left, lower, root.val) && isValid(root.right, root.val, upper);
}
return true;
}
}

Iterative Inorder traversal solution

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
public boolean isValidBST (TreeNode root){
Stack<TreeNode> stack = new Stack<TreeNode> ();
TreeNode cur = root ;
TreeNode pre = null ;
while (!stack.isEmpty() || cur != null) {
if (cur != null) {
stack.push(cur);
cur = cur.left ;
} else {
TreeNode p = stack.pop() ;
if (pre != null && p.val <= pre.val) {
return false ;
}
pre = p ;
cur = p.right ;
}
}
return true ;
}